Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Rev Chem ; 8(2): 106-119, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38200220

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) have an essential role in global carbon cycle, industrial biomass processing and microbial pathogenicity by catalysing the oxidative cleavage of recalcitrant polysaccharides. Despite initially being considered monooxygenases, experimental and theoretical studies show that LPMOs are essentially peroxygenases, using a single copper ion and H2O2 for C-H bond oxygenation. Here, we examine LPMO catalysis, emphasizing key studies that have shaped our comprehension of their function, and address side and competing reactions that have partially obscured our understanding. Then, we compare this novel copper-peroxygenase reaction with reactions catalysed by haem iron enzymes, highlighting the different chemistries at play. We conclude by addressing some open questions surrounding LPMO catalysis, including the importance of peroxygenase and monooxygenase reactions in biological contexts, how LPMOs modulate copper site reactivity and potential protective mechanisms against oxidative damage.


Assuntos
Peróxido de Hidrogênio , Metaloproteínas , Peróxido de Hidrogênio/química , Cobre/química , Polissacarídeos/química , Oxigenases de Função Mista/química , Catálise
3.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502439

RESUMO

The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes' geometry to modulate peptides' activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.


Assuntos
Cobre/metabolismo , Ribonuclease Pancreático/química , Linhagem Celular Tumoral , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli , Humanos , Ribonuclease Pancreático/metabolismo
4.
FEBS J ; 287(15): 3298-3314, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31903721

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes involved in the degradation of recalcitrant polysaccharides such as cellulose or chitin. LPMOs act in synergy with glycoside hydrolases such as cellulases and chitinases by oxidatively cleaving a number of glycosidic bonds at the surface of their crystalline substrate(s). Besides their role in biomass degradation, some bacterial LPMOs have been found to be virulence factors in some human and insect pathogens. Photorhabdus luminescens is a nematode symbiont bacterium that is pathogenic to a wide range of insects. A single gene encoding a LPMO is found in its genome. In this work, we report the characterization of this LPMO, referred to as PlAA10. Surprisingly, PlAA10 lacks the conserved alanine residue (substituted by an isoleucine) found in the second coordination sphere of the copper-active site in bacterial LPMOs. PlAA10 was found to be catalytically active on both α- and ß-chitin, and exhibits a C1-oxidation regiospecificity, similarly to other chitin-active LPMOs. The 1.6 Å X-ray crystal structure confirmed that PlAA10 adopts the canonical immunoglobulin-like fold typical for LPMOs. The geometry of the copper-active site is not affected by the nearby isoleucine, as also supported by electron paramagnetic resonance. Nevertheless, the bulkier side chain of isoleucine protrudes from the substrate-binding surface. A bioinformatic study on putative bacterial LPMOs unveiled that they exhibit some variability at the conserved active-site alanine position with a substitution in about 15% of all sequences analyzed. DATABASE: Structural data (atomic coordinates and structure factors) reported for PlAA10 are available in the Protein Data Bank under accession number 6T5Z. ENZYMES: PlAA10, EC1.14.99.53.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Photorhabdus/enzimologia , Polissacarídeos/metabolismo , Alanina/química , Alanina/genética , Alanina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cobre/química , Cristalografia por Raios X , Isoleucina/química , Isoleucina/genética , Isoleucina/metabolismo , Oxigenases de Função Mista/genética , Modelos Moleculares , Mutação , Oxirredução , Polissacarídeos/química , Conformação Proteica , Homologia de Sequência , Especificidade por Substrato
5.
Biointerphases ; 13(3): 03C401, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29660986

RESUMO

Angiogenin is a protein crucial in angiogenesis, and it is overexpressed in many cancers and downregulated in neurodegenerative diseases, respectively. The protein interaction with actin, through the loop encompassing the 60-68 residues, is an essential step in the cellular cytoskeleton reorganization. This, in turn, influences the cell proliferation and migration processes. In this work, hybrid nanoassemblies of gold nanoparticles with angiogenin fragments containing the 60-68 sequence were prepared and characterized in their interaction with both model membranes of supported lipid bilayers (SLBs) and cellular membranes of cancer (neuroblastoma) and normal (fibroblasts) cell lines. The comparison between physisorption and chemisorption mechanisms was performed by the parallel investigation of the 60-68 sequence and the peptide analogous containing an extra cysteine residue. Moreover, steric hindrance and charge effects were considered with a third analogous peptide sequence, conjugated with a fluorescent carboxyfluorescein (Fam) moiety. The hybrid nanobiointerface was characterized by means of ultraviolet-visible, atomic force microscopy and circular dichroism, to scrutinize plasmonic changes, nanoparticles coverage and conformational features, respectively. Lateral diffusion measurements on SLBs "perturbed" by the interaction with the gold nanoparticles-peptides point to a stronger membrane interaction in comparison with the uncoated nanoparticles. Cell viability and proliferation assays indicate a slight nanotoxicity in neuroblastoma cells and a proliferative activity in fibroblasts. The actin staining confirms different levels of interaction between the hybrid assemblies and the cell membranes.


Assuntos
Indutores da Angiogênese/metabolismo , Membrana Celular/efeitos dos fármacos , Ouro , Nanopartículas/química , Peptídeos/metabolismo , Ribonuclease Pancreático/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Nanopartículas/toxicidade , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ligação Proteica
6.
Int J Mol Sci ; 17(8)2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27490533

RESUMO

Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang-actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo ("wild-type", wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein-copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1-17) and AcAng(1-17), which encompass the sequence 1-17 of angiogenin (QDNSRYTHFLTQHYDAK-NH2), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides.


Assuntos
Complexos de Coordenação/farmacologia , Cobre/metabolismo , Neuroblastoma/patologia , Fragmentos de Peptídeos/farmacologia , Ribonuclease Pancreático/metabolismo , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Concentração de Íons de Hidrogênio , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Ligação Proteica , Ribonuclease Pancreático/química , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...